Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3764, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773247

RESUMEN

Effective vaccines protect individuals by not only reducing the susceptibility to infection, but also reducing the infectiousness of breakthrough infections in vaccinated cases. To disentangle the vaccine effectiveness against susceptibility to infection (VES) and vaccine effectiveness against infectiousness (VEI), we took advantage of Danish national data comprising 24,693 households with a primary case of SARS-CoV-2 infection (Delta Variant of Concern, 2021) including 53,584 household contacts. In this setting, we estimated VES as 61% (95%-CI: 59-63), when the primary case was unvaccinated, and VEI as 31% (95%-CI: 26-36), when the household contact was unvaccinated. Furthermore, unvaccinated secondary cases with an infection exhibited a three-fold higher viral load compared to fully vaccinated secondary cases with a breakthrough infection. Our results demonstrate that vaccinations reduce susceptibility to infection as well as infectiousness, which should be considered by policy makers when seeking to understand the public health impact of vaccination against transmission of SARS-CoV-2.


Asunto(s)
COVID-19 , Vacunas , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Vacunación
2.
Euro Surveill ; 27(10)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35272746

RESUMEN

Following emergence of the SARS-CoV-2 variant Omicron in November 2021, the dominant BA.1 sub-lineage was replaced by the BA.2 sub-lineage in Denmark. We analysed the first 2,623 BA.2 cases from 29 November 2021 to 2 January 2022. No epidemiological or clinical differences were found between individuals infected with BA.1 versus BA.2. Phylogenetic analyses showed a geographic east-to-west transmission of BA.2 from the Capital Region with clusters expanding after the Christmas holidays. Mutational analysis shows distinct differences between BA.1 and BA.2.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Dinamarca/epidemiología , Humanos , Epidemiología Molecular , Filogenia , SARS-CoV-2/genética
3.
PLoS One ; 8(11): e82319, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312412

RESUMEN

The multiple displacement amplification method has revolutionized genomic studies of uncultured bacteria, where the extraction of pure DNA in sufficient quantity for next-generation sequencing is challenging. However, the method is problematic in that it amplifies the target DNA unevenly, induces the formation of chimeric reads and also amplifies contaminating DNA. Here, we have tested the reproducibility of the multiple displacement amplification method using serial dilutions of extracted genomic DNA and intact cells from the cultured endosymbiont Bartonella australis. The amplified DNA was sequenced with the Illumina sequencing technology, and the results were compared to sequence data obtained from unamplified DNA in this study as well as from a previously published genome project. We show that artifacts such as the extent of the amplification bias, the percentage of chimeric reads and the relative fraction of contaminating DNA increase dramatically for the smallest amounts of template DNA. The pattern of read coverage was reproducibly obtained for samples with higher amounts of template DNA, suggesting that the bias is non-random and genome-specific. A re-analysis of previously published sequence data obtained after amplification from clonal endosymbiont populations confirmed these predictions. We conclude that many of the artifacts associated with the use of the multiple displacement amplification method can be alleviated or much reduced by using multiple cells as the template for the amplification. These findings should be particularly useful for researchers studying the genomes of endosymbionts and other uncultured bacteria, for which a small clonal population of cells can be isolated.


Asunto(s)
Genoma Bacteriano , Simbiosis , Bartonella/genética , ADN Bacteriano/genética , Reproducibilidad de los Resultados
4.
PLoS Genet ; 9(4): e1003381, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23593012

RESUMEN

The importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts. Using this method, we have sequenced the complete genomes of the Wolbachia strains wHa and wNo, which occur as natural double infections in Drosophila simulans populations on the Seychelles and in New Caledonia. Taxonomically, wHa belong to supergroup A and wNo to supergroup B. A comparative genomics study including additional strains supported the supergroup classification scheme and revealed 24 and 33 group-specific genes, putatively involved in host-adaptation processes. Recombination frequencies were high for strains of the same supergroup despite different host-preference patterns, leading to genomic cohesion. The inferred recombination fragments for strains of different supergroups were of short sizes, and the genomes of the co-infecting Wolbachia strains wHa and wNo were not more similar to each other and did not share more genes than other A- and B-group strains that infect different hosts. We conclude that Wolbachia strains of supergroup A and B represent genetically distinct clades, and that strains of different supergroups can co-exist in the same arthropod host without converging into the same species. This suggests that the supergroups are irreversibly separated and that barriers other than host-specialization are able to maintain distinct clades in recombining endosymbiont populations. Acquiring a good knowledge of the barriers to genetic exchange in Wolbachia will advance our understanding of how endosymbiont communities are constructed from vertically and horizontally transmitted genes.


Asunto(s)
Drosophila , Genoma Bacteriano , Simbiosis , Wolbachia , Animales , Drosophila/genética , Drosophila/microbiología , Genómica , Nueva Caledonia , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN , Seychelles , Especificidad de la Especie , Simbiosis/genética , Simbiosis/fisiología , Wolbachia/genética , Wolbachia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...